It may contain outdated information and may not meet current or future WCAG accessibility standards. We provide this content, its subpages, and associated links for historical reference only. If you need assistance, please contact support@cs.washington.edu
We demonstrate a novel laser-based wireless power delivery system that can charge mobile devices such as smartphones across a room. The key challenges in achieving this are multi-fold: delivering greater than a watt of power across the room, minimizing the exposure of the resulting high-power lasers to human tissue, and finally, ensuring that the design meets the form-factor requirements of a smartphone and requires minimal instrumentation to the environment. This paper presents a novel, and to the best of our knowledge, the first design, implementation and evaluation of an end-to-end power delivery system that satisfies all the above requirements. Our results show that we can deliver more than 2 W at ranges of 4.3 m and 12.2 m for a smartphone (25 cm2) and table-top form factor (100 cm2) receiver respectively. Further, extensive characterization of our safety system shows that we can turn off our laser source much before a human moving at a maximum speed of 44 m/s can even enter the high-power laser beam area.
Using a laser to wirelessly charge a smartphone safely across a roomEngineers at the University of Washington have developed a method to safely charge a smartphone wirelessly — using a laser. Read more: http://www.washington.edu/news/2018/02/20/using-a-laser-to-wirelessly-charge-a-smartphone-safely-across-a-room/
Posted by University of Washington News on Tuesday, February 20, 2018
Vikram Iyer
Elyas Bayati
Rajalakshmi Nandakumar
© Vikram Iyer, Electrical Engineering,
University of Washington.
Powered by Bootstrap.