We demonstrate a novel laser-based wireless power delivery system that can charge mobile devices such as smartphones across a room. The key challenges in achieving this are multi-fold: delivering greater than a watt of power across the room, minimizing the exposure of the resulting high-power lasers to human tissue, and finally, ensuring that the design meets the form-factor requirements of a smartphone and requires minimal instrumentation to the environment. This paper presents a novel, and to the best of our knowledge, the first design, implementation and evaluation of an end-to-end power delivery system that satisfies all the above requirements. Our results show that we can deliver more than 2 W at ranges of 4.3 m and 12.2 m for a smartphone (25 cm2) and table-top form factor (100 cm2) receiver respectively. Further, extensive characterization of our safety system shows that we can turn off our laser source much before a human moving at a maximum speed of 44 m/s can even enter the high-power laser beam area.
Using a laser to wirelessly charge a smartphone safely across a roomEngineers at the University of Washington have developed a method to safely charge a smartphone wirelessly — using a laser. Read more: http://www.washington.edu/news/2018/02/20/using-a-laser-to-wirelessly-charge-a-smartphone-safely-across-a-room/
Posted by University of Washington News on Tuesday, February 20, 2018
Vikram Iyer
Elyas Bayati
Rajalakshmi Nandakumar
© Vikram Iyer, Electrical Engineering,
University of Washington.
Powered by Bootstrap.